

Solar Heat for Industrial Processes

EXLOITING UNTAPPED POTENTIAL OF INDUSTRIAL SOLAR HEAT: SHIP2FAIR

Day 2 - Thursday 15 June, 2023 - Madrid, Spain

sustainableplaces.eu

Solar Heat for Industrial Processes towards Food and Agro Industries commitment in Renewables

Project Welcome and Presentation Final Event SP23, 15/06/2023

Miguel Zarzuela - mzarzuela@fcirce.es

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 792276.

Disclaimer: The sole responsibility for any error or omissions lies with the editor. The content does not necessarily reflect the opinion of the European Commission. The European Commission is also not responsible for any use that may be made of the information contained

TIME	TOPIC	SPEAKERS	
09h00	SHIP2FAIR welcome and presentation SHIP2 FAIR main goal, <u>objectives</u> and introduction to project's set of technologies and tools.	Miguel Zarzuela (CIRCE)	
09h15	Solar thermal technologies for the agro-food industry	Dimitrios Papageorgiou (TVP) and Irapua <u>Ribero</u> (IS)	
09h35	Presentation of the Control Tool	Viktor Unterberger (BEST)	
09h55	Presentation of the Replication Tool	Giorgio Bonvicini (RINA-C)	
10h10	Hand-on experience & good practices in solar thermal adoption in the agro-food sector - RODA	Esperanza Tomas (RODA)	
10:25	Questions		
	BREAK		

SHIP2FAIR Agenda

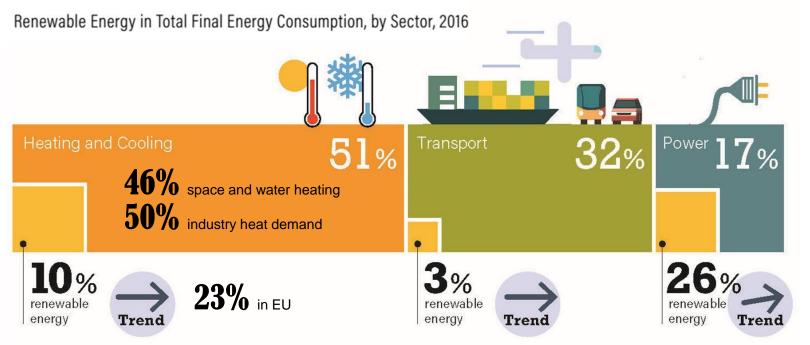
Solar Heat for Industrial Processes towards Food and Agro Industries commitment in Renewables

11h00	SHIP2FAIR welcome – Part II	Miguel Zarzuela (CIRCE)
11h05	Hand-on experience & good practices in solar thermal adoption in the agro-food sector – M&R	Antonino <u>Giummulè</u> (M&R)
11h20	Business and financing schemes for SHIP installation	Dimitrios Papageorgiou (TVP) and Irapua Ribero (IS)
11h40	Presentation of Replication Studies for solar thermal in industry	Giorgio Bonvicini (RINA-C) and Irapua Ribero (IS)
12h55	Roadmap for deployment of Solar Heating for Ship2Fair	Nicola Chiara (LINKS)
12h05	Renewable penetration in Spanish Industry	Susana Rivera
		(Cooperativas)
12h15	Lessons learnt and Policy Recommendations	Luis Heras (CIRCE)
12h25	Questions	

SHIP2FAIR Agenda

SHIP2FAIR Concept

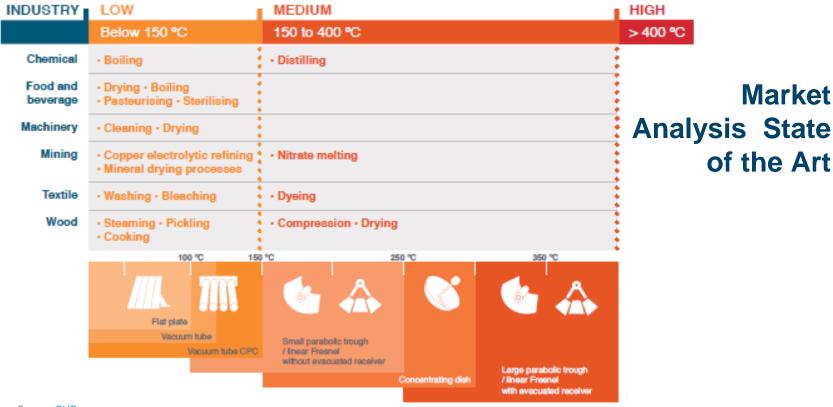
Unveiling the untapped potential of solar heat for agroindustries in EU


Fostering the integration of solar heat in industrial processes - SHIP from agro-food sector, by developing and demonstrating a set of tools and methods for the development of industrial solar heat projects during its whole life-cycle.

BUDGET: 8M €

DURATION: 2018-2023

Global Outlook – Energy Demand


Note: Data should not be compared with previous editions of the Renewables Global Status Reports. Electricity also supplies final energy demand in the heating and cooling sector (7.1% in 2016), and transport sector (1.1% in 2016).

Source: Based on OECD/IEA.

REN21 RENEWABLES IN CITIES 2019 GLOBAL STATUS REPORT

Solar Heat for Industrial Processes towards Food and Agro Industries commitment in Renewables

Source: SHC

SHIP2FAIR Concept

Unveiling the untapped potential of solar heat for agroindustries in EU

Fostering the integration of solar heat in industrial processes - SHIP from agro-food sector, by developing and demonstrating a set of tools and methods for the development of industrial solar heat projects during its whole life-cycle.

BUDGET: 8M €

DURATION: 2018-2023

SHIP2FAIR Partners

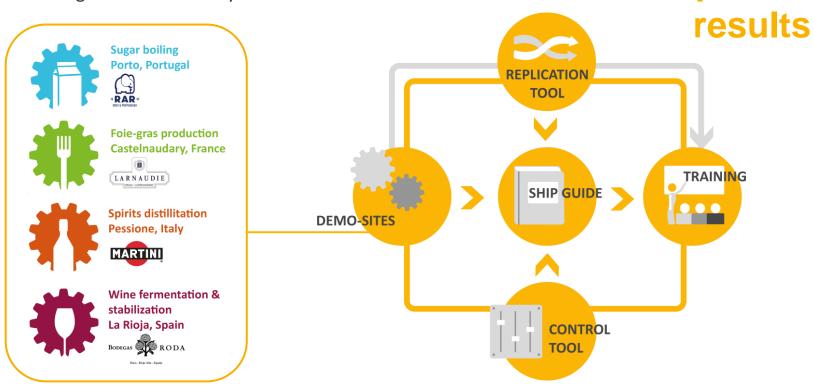
Coordination

R&D and consulting

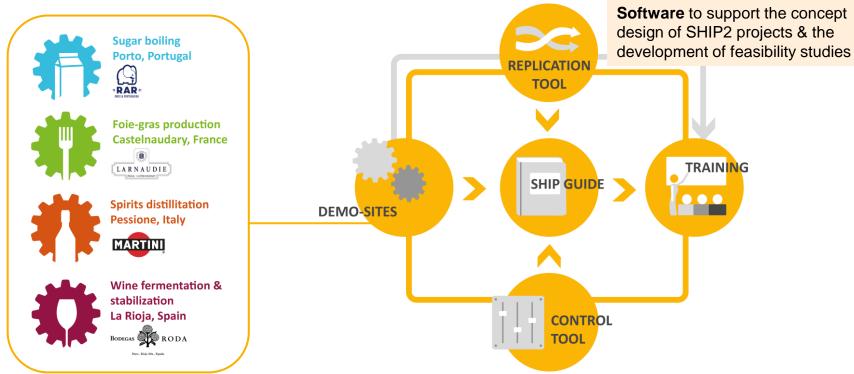
Solar technologies

providers

Agro-food field experts



SHIP2FAIR will develop & demonstrate, in a 4 real industrial sites - demosites, a set of tools & methods for the development of industrial solar heat projects during their whole life-cycle.

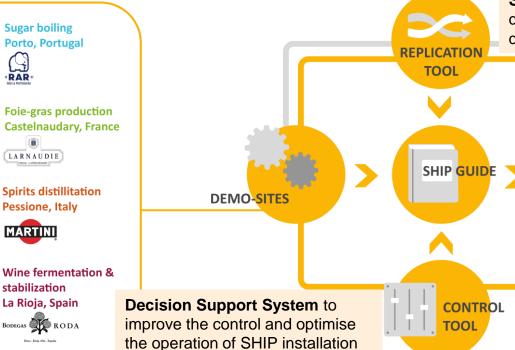


SHIP2FAIR

Expected

SHIP2FAIR will develop & demonstrate, in a 4 real industrial sites - demosites, a set of tools & methods for the development of industrial solar heat projects during their whole life-cycle.

SHIP2FAIR Expected



SHIP2FAIR will develop & demonstrate, in a 4 real industrial sites - demosites, a set of tools & methods for the development of industrial solar heat projects during their whole life-cycle.

SHIP2FAIR **Expected**

Software to support the concept design of SHIP2 projects & the development of feasibility studies

TRAINING

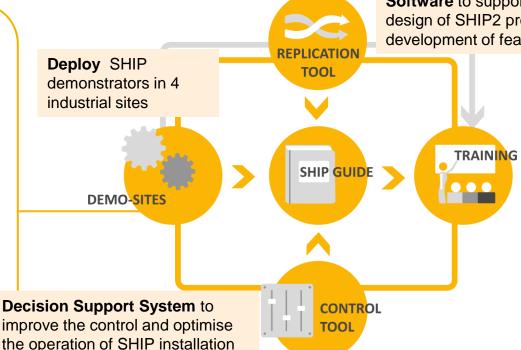
combining supply and demand

data

Solar Heat for Industrial Process

MARTINI

stabilization

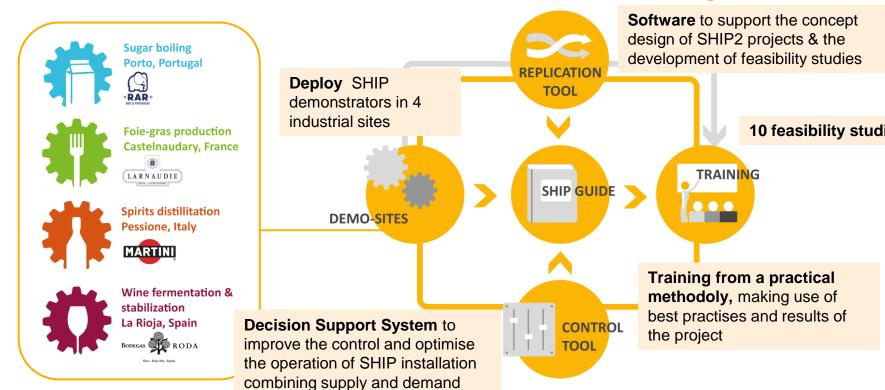

stries commitment in Renewables

SHIP2FAIR will develop & demonstrate, in a 4 real industrial sites - demosites, a set of tools & methods for the development of industrial solar heat projects during their whole life-cycle.

SHIP2FAIR **Expected**

Software to support the concept design of SHIP2 projects & the development of feasibility studies

improve the control and optimise the operation of SHIP installation combining supply and demand data Solar Heat for Industrial Process


stries commitment in Renewables

SHIP2FAIR will develop & demonstrate, in a 4 real industrial sites - demosites, a set of tools & methods for the development of industrial solar heat projects during their whole life-cycle.

data

SHIP2FAIR Expected

stries commitment in Renewables

Solar Heat for Industrial Process

DEMO-SITES

SHIP2FAIR The demo-sites & the flagship SHIP systems fully validated in real processes:

Novel solar collectors demonstrated in average irradiance areas through demonstration campaign

- Total capacity: 1.7 MWth
- Solar fraction: 24% av.
- Yearly average solar efficiency:
 44% (M&R)-54% (RODA)

- Primary energy savings:
 - 2 GWh/year
 - 570 tCO₂/year avoided
 - 2.7 GWh/year increase of RES in industrial heating

SHIP2FAIR From 2018 to 2022 and beyond

2018	2020	2022 SHIP2FAIR's end	2023	2025	2027
 SHIP2FAIR's kick off Replication & Control Tools development 	 Demonstration campaign at demosites Tools ready Capacity building with the SHIP guide 	 Scale-up & replication in demo-sites Identification of barriers & measures Feasibility studies in 10 additional sites 	Application of busing	ready to market HIP2FAIR results in the ident ness strategy & SHIP2FAIR to t: Ground ready for implemen	ools to other industries

SHIP2FAIR

Thank you!

info@ship2fair-h2020.eu www.ship2fair-h2020.eu

Solar Heat for Industrial Process towards Food and Agro Industries commitment in Renewables

Hand-on experience & good practices in solar thermal adoption in the agro-food sector

Sustainable Places, 15th June 2023

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 792276.

Disclaimer: The sole responsibility for any error or omissions lies with the editor. The content does not necessarily reflect the opinion of the European Commission. The European Commission is also not responsible for any use that may be made of the information contained herein.

Demo site example and successful results SHIP2FAIR

ITEM	AGENDA	
1	Company description: Martini & Rossi	
2	Technology description	
3	System integration	
4	Lessons learnt and next steps	

ROLE OF PESSIONE OC

1863

MARTINI, SOLA e C.ia officially was born

1993

Bacardi acquire MARTINI & ROSSI Is the CRADLE OF MARTINI and the producer of FLAGSHIP BRANDS

within the Bacardi portfolio

CENTER OF EXCELLENCE and PROFICIENCY for production, development and industrialization of VERMOUTHS, SPARKLING WINES and BACARDI BOTTLING

Company description SHIP2FAIR Martini & Rossi

It all began with three

men...

Teofilo Sola 1831-1879

Alessandro Martini 1834-1905

Luigi Rossi 1828-1892

JULY 1ST, 1863: Martini, Sola e Compagnia was OFFICIALLY BORN IN TURIN.

Alessandro Martini and Teofilo Sola were two of the founders.

Luigi Rossi, **SKILLED HERBALIST AND WINE TECHNICIAN**, was part of the company with a participating share.

In 1864 **PRODUCTION MOVED TO PESSIONE**, a strategic centre for its closeness to the railway line that links up Turin and Genoa towards the international markets.

Company description SHIP2FAIR Pessione: How it looks now

KEY DATA FY 2022

Formulas and products

27 Martini

16 Sparklingwines

20 Bacardi

3 Liquors and Spirits

Countries supplied over 100

Plant surface

161,000 m2 - 40 acres

19.7 M 9L cases bottling

Covered surface

68,000 m2

SKUs handled

775 (production + co-packing)

Certifications

ISO 14001 since 2002

OSHAS 18001 (ISO 45001) since 2006

ISO 9001 since 2007

Equalitas in 2020

Great Place to Work 2022

Company description SHIP2FAIR

Martini & Rossi: 3 main families of product

MARTINI APERITIFS

MARTINI SPARKLING

BACARDI

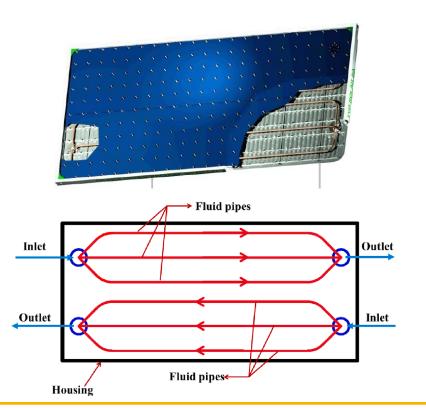
Technology Description SHIP2FAIRNew solar field installation

April 2018: Project Start, Martini & Rossi applied to the SHIP2FAIR program as a Demo site

Feb 2021: Solar Field installation completed

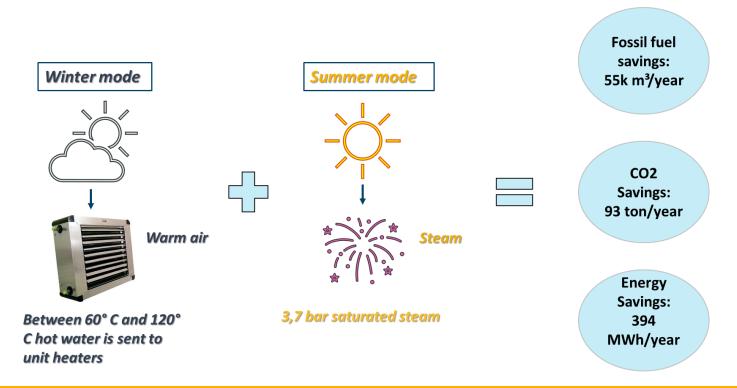
Feb 2023 till the end of the project (June 2023):
Fine tuning ongoing

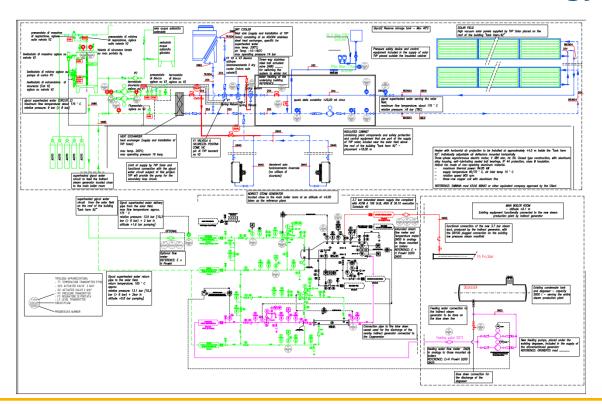
Solar Heat for Industrial Processes towards Food and Agro Industries commitment in Renewables²⁶

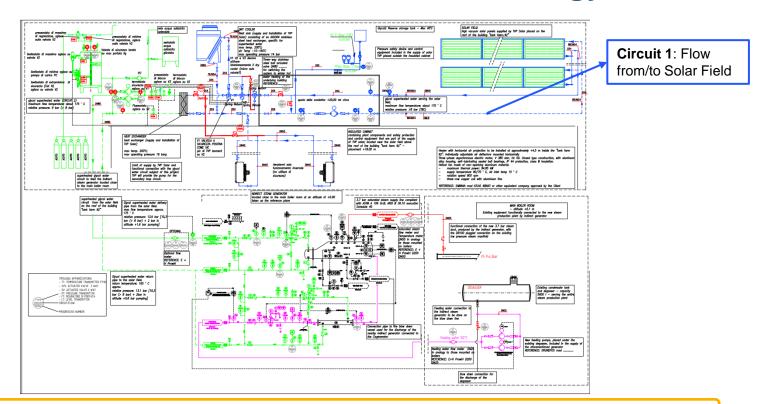

Technology Description SHIP2FAIRNew solar field installation

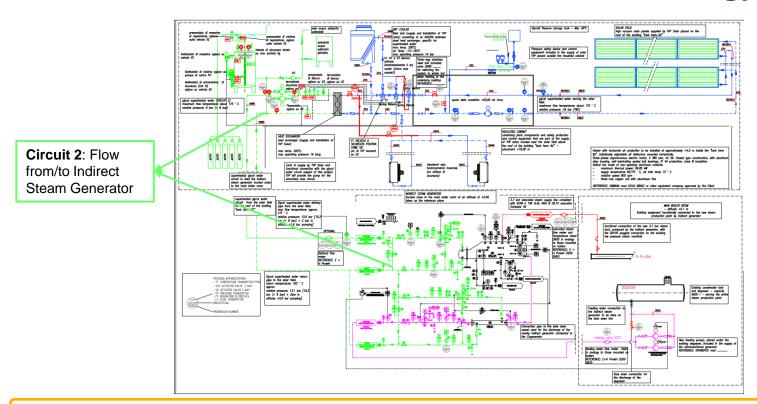
SOLAR FIELD SPECS		
SF Inlet Temperature	152	°C
SF Outlet Temperature	165 -177	°C
Hot Water Density	912,3	kg/m³
Hot Water Specific Heat	4,3	kJ/kg/K
Solar Field Peak Efficiency	56%	
Safety Factor	113%	
# Of Panels	298	#
Gross Area	596	m²
Installed Area	1.073	m²
Solar Field Peak Power	329	kW
Panels' Tilt Angle	35	٥

Solar Heat for Industrial Processes towards Food and Agro Industries commitment in Renewables

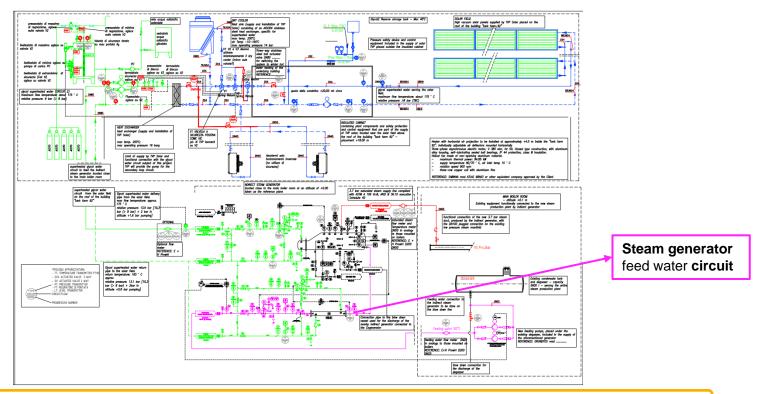

Technology Description SHIP2FAIRNew solar field installation

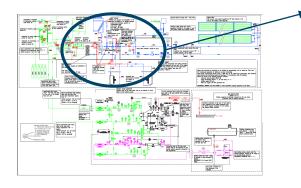


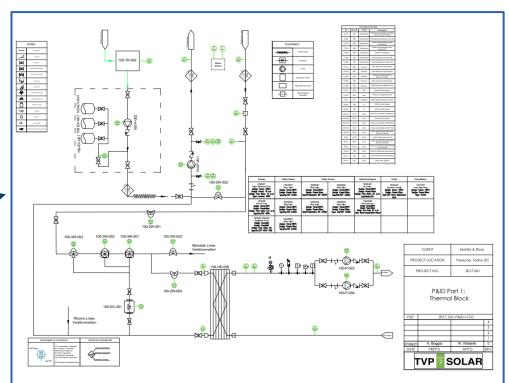

TVP SOLAR


- SolarKeyMark certified up to 200°C
- Highest energy production with any ambient temperature, in any climate condition
- High-vacuum insulation suppresses thermal losses
- 20 years consistent & predictable performance without any degradation
- Designed for industrial-scale applications

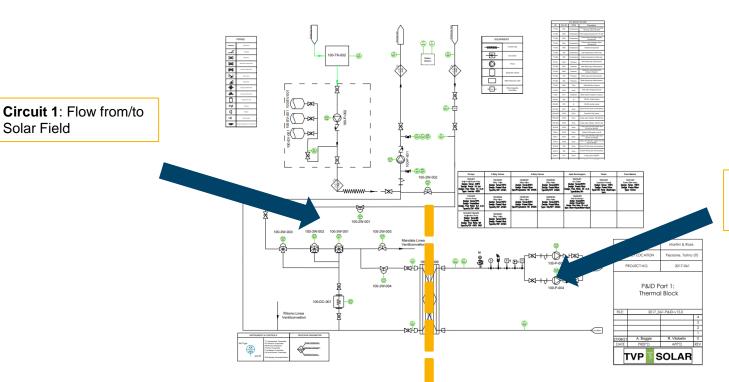
Technology Description SHIP2FAIRM&R Energy Source



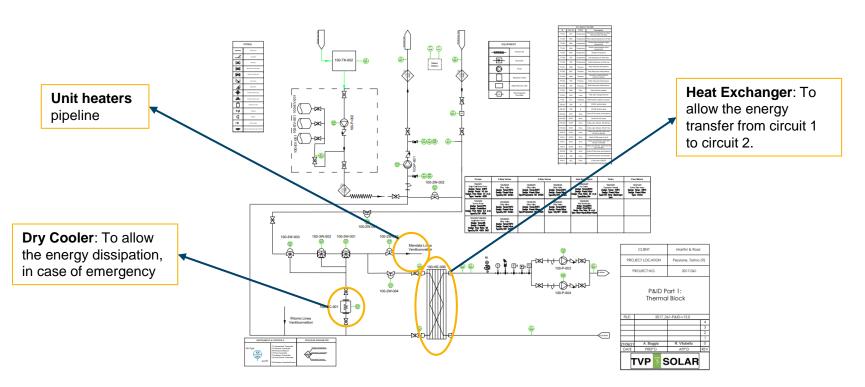


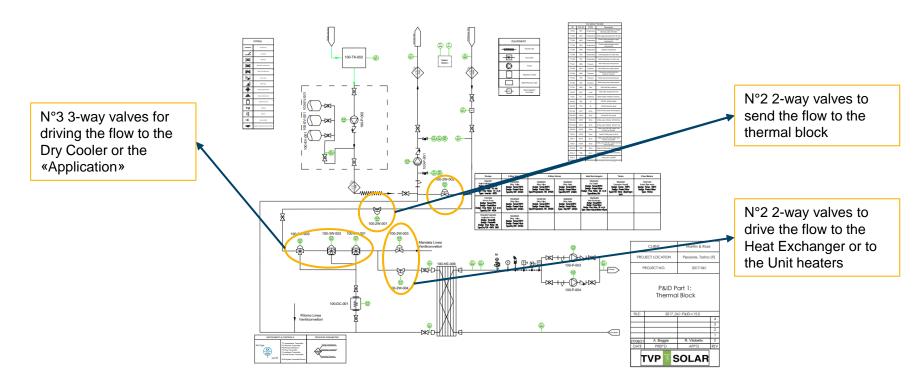

Solar Heat for Industrial Processes towards Food and Agro Industries commitment in Renewables

Focus on thermal block SHIP2FAIR M&R Energy Source


How the system is able to drive the flow based on circuit 1 temperature and pressure.

Solar Heat for Industrial Processes towards Food and Agro Industries commitment in Renewables


Focus on thermal block SHIP2FAIR **M&R Energy Source**


Solar Field

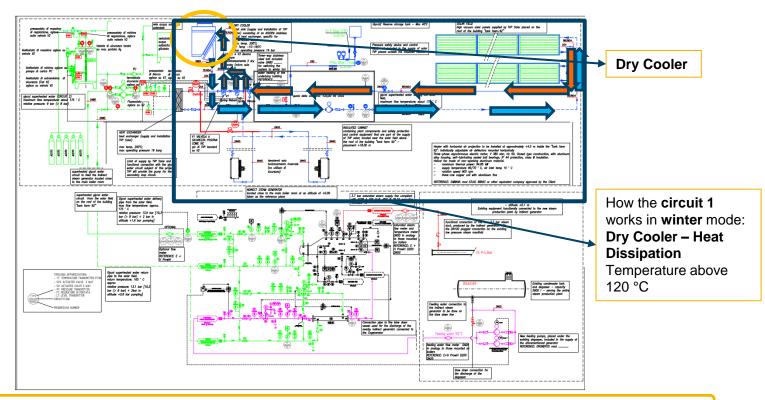
Circuit 2: Flow from/to Indirect Steam Generator

Focus on thermal block SHIP2FAIR M&R Energy Source

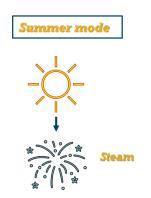

Focus on thermal block SHIP2FAIR M&R Energy Source

Winter Mode SHIP2FAIR Operation Mode details

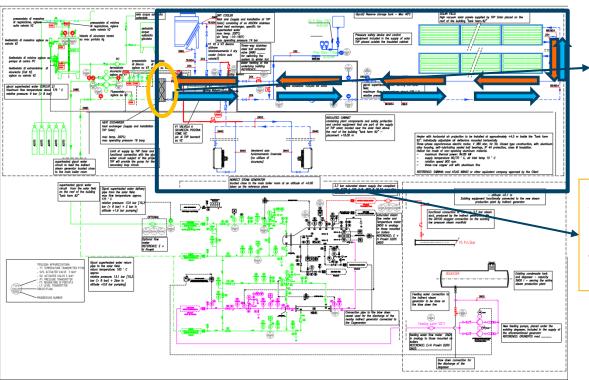
sent to unit heaters



Unit Heaters: to provide energy to the environment

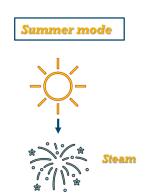

How the circuit 1 works in winter mode: Energy Production

Winter Mode SHIP2FAIR Operation Mode details

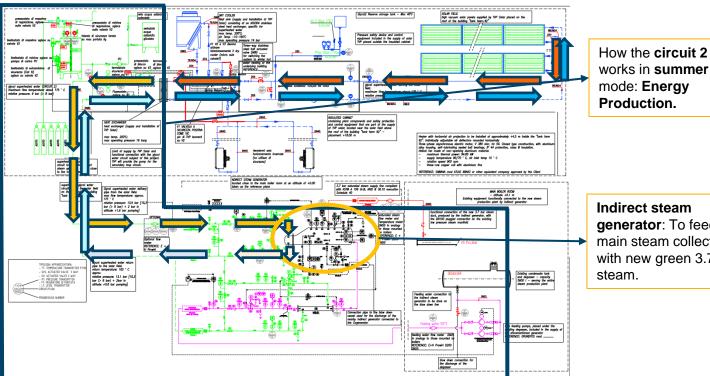


Summer Mode SHIP2FAIROperation Mode details

3.7 bar saturated

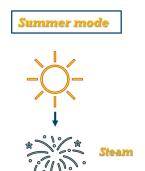

steam

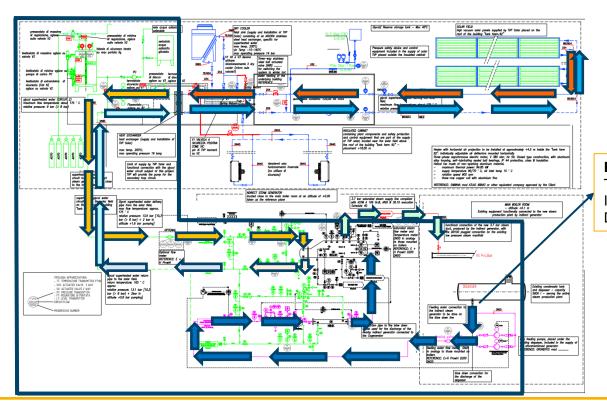
Heat Exchanger: To transfer energy from circuit 1 to circuit 2


How the circuit 1
works in summer
mode: Energy
Production.
Temperature between
110 °C and 177 °C

Summer Mode SHIP2FAIR Operation Mode details

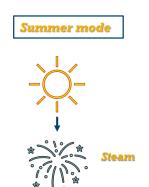
3.7 bar saturated

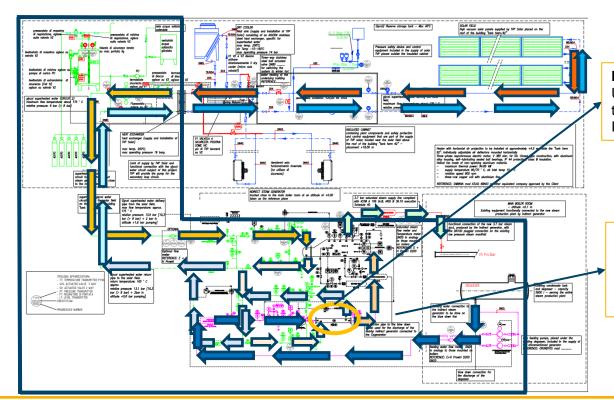

steam


Production.

Indirect steam generator: To feed the main steam collector with new green 3.7 bar steam.

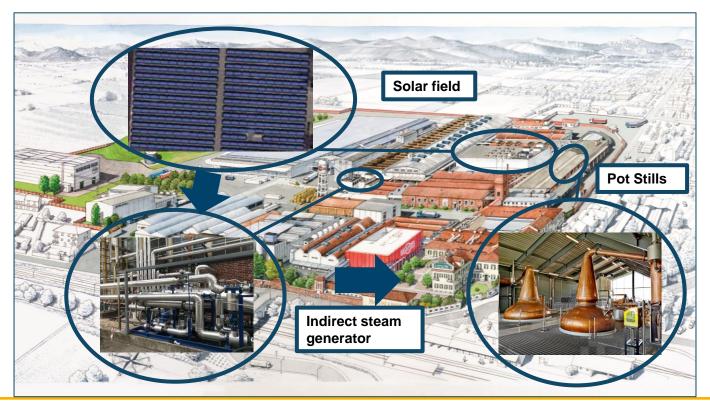
Summer Mode SHIP2FAIROperation Mode details

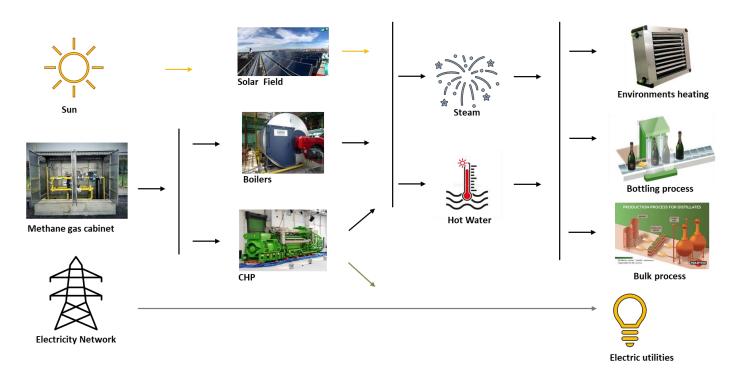

3,7 bar saturated steam


Feed water circuit:

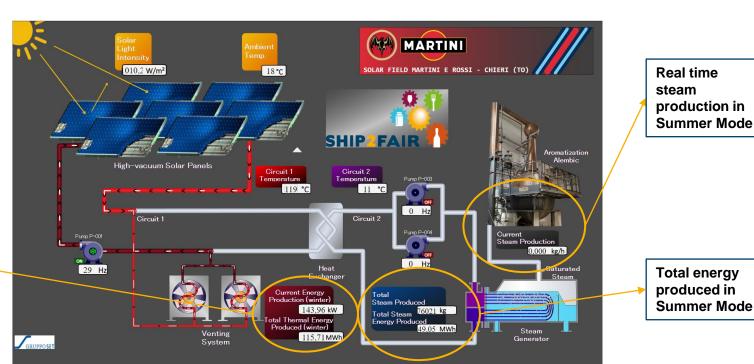
The water entering the ISG comes from the Degaser (104 °C)

Summer Mode SHIP2FAIR Operation Mode details


3,7 bar saturated steam


Heat Exchanger:
Used for pre-heating
the water entering the
ISG

Feed water circuit: Before entering the ISG it is preheated using the return of circuit 2.


System Integration SHIP2FAIRM&R Energy Archtecture

System Integration SHIP2FAIRM&R Energy Architecture

Technology Description SHIP2FAIR System integration

Total and real time energy

production in

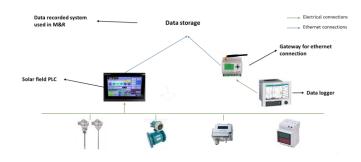
Winter Mode

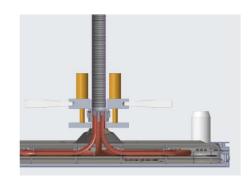
Lesson learnt SHIP2FAIR 3 main categories

Regulatory aspects

Due to the high temperatures and pressures reachable by the system, it is mandatory to meet the requirements for standard technologies.

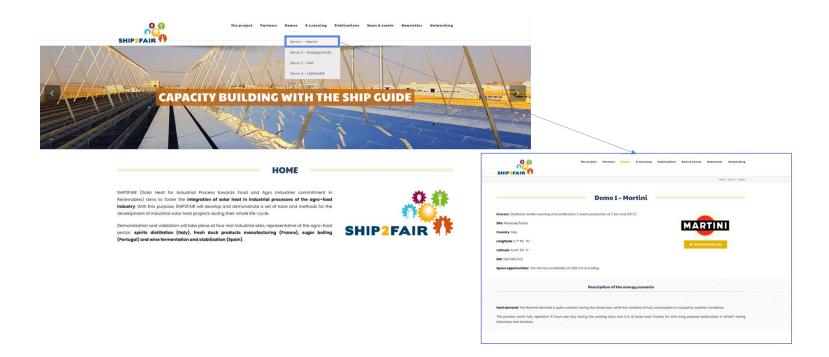
There is still no specific regulation for solar power plants in the industrial sector in Italy.


IT infrastructure


To enable the right interconnection between the system and the project partners, it was necessary to build a proper infrastructure compliant with both internal IT policies and project requirements.

Mechanical defeats

Due to the significant temperature differences between day and night, an in-depth analysis and testing phase was necessary on the mechanical components of the system.



Next steps SHIP2FAIR

Nr	Objective description	M&R Next Steps
1.	Systems operating modes.	 Fine Tuning ongoing: Finding the best solution for the settings of the two circuit pumps to maximize the efficiency of the heat exchange. Finding the best valve opening setting to maximize boiler efficiency
2.	Remote Supervision system	Create an IT infrastructure to allow TVP to enter the solar field PLC remotely for maintenance and analysis purposes.

Solar Heat for Industrial Processes towards Food and Agro Industries commitment in Renewables

ShipToFair Website SHIP2FAIR

Solar Heat for Industrial Processes towards Food and Agro Industries commitment in Renewables

agiummule@bacardi.com

Solar Heat for Industrial Process towards Food and Agro Industries commitment in Renewables

Suitable business and financing schemes for SHIP* installation

*Solar Heat for Industrial Processes

SHIP2FAIR FINAL EVENT

"Decarbonisation of the agro-food industry with solar heat: technologies and processes" Sustainable Places 2023, 15 June 2023

Dimitrios

Irapua Ribeiro

Papageofgiouect has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 792276.

Disclaimer: The sole responsibility for any error or omissions lies with the editor. The content does not necessarily reflect the opinion of the European Commission. The European Commission is also not responsible for any use that may be made of the information contained herein.

SHIP Market Prospects SHIP2FAIR Summary

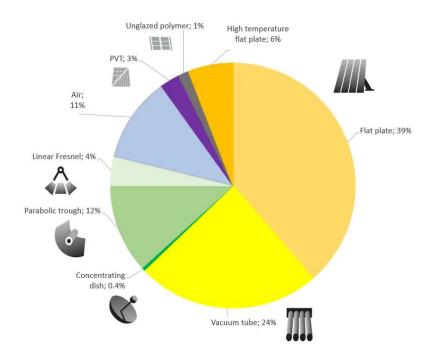
Several successful stories of implemented projects around the world

Diverse funds resources available for SHIP projects

Decreasing SHIP costs throughout time

High fossil fuels prices & climate commitments boost solar thermal market

Possible alternative for several segments of the industrial sector


Trending technologies for the last 15 years

SHIP Market Prospects SHIP2FAIR A dynamic market

High level of dynamism on the SHIP world market in

2022

ZUZZ								
LUL		2018	2019	2020	2021	2022	Total until 2022	
No. of SHIP systems	107	99	86	85	71	114	at least 1,089	

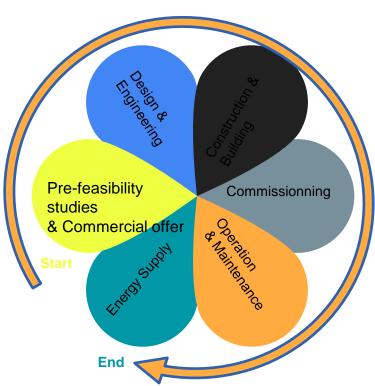
Stats of 2022 by technology type

Source: SolarThermalWorld

SHIP Project Value Chain SHIP2FAIR Stakeholders

Industrial Companies

Industrial companies whose heat demand fits the range of application of solar thermal (i.e. the agro-food industry). They are the potential clients in the value-chain


Energy/Heat Suppliers

Companies that are supplying heat to their customers. They can also assume the role of facility operator

Government, Policy Makers, European organisations and national institutions

Policy makers in charge of changing regulation related to renewable heat sources. They shape the environment within the different players evolved.

They provide guidance for the development of less traditional systems

Energy Consulting Companies

Companies that help their customers make informed choices about their energy consumption/provisions. They can also assist them in the building phase

Solar Thermal Equipment Manufacturers or suppliers

Companies that manufacture the different types of solar thermal equipment

Third party investors

investment companies that specialises in the third-party financing of renewable heat production projects and energy efficiency projects.


EPC Contractors and O&M

Third party in charge to physically build the installation once materials and detailed design are provided. This role could be assumed by the equipments manufacturers or supplier

Solar Heat for Industrial Processes towards Food and Agro Industries commitment in Renewables

SHIP Project Launch

SHIP2FAIR Sales engagement process flow

Phase

- Quick assessment of the solar heat potential
- •FREE

"Feasibility Study"

- Site-unseen engineering study
- •FREE or an fee basis (depending on the
- case)

Phase

"Engineering Study"

- •Full-spec engineering study + bill of components
- On a fee basis

Turn

Turnkey Contract/ Heat Purchase Agreement

BUSINESS MODELS

SHIP2FAIR Business Model SHIP2FAIR Business Model Options

Build & Handover Model

- The industrial customer pays for & operates the solar thermal system
- Optional operation& maintenancecontract

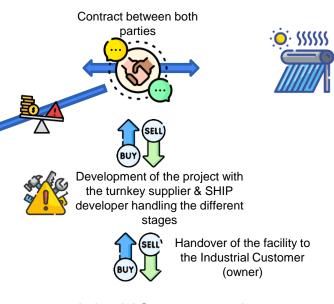
Build & Operate Model

- □ SHIP project
 developer pays the
 investment cost,
 owns & operates
 the solar thermal
 system
- ☐ The industrial partner buys solar heat

Hybrid Model

- ☐ Like the Build & Operate model with one difference:
- After 10 or 15 years of operation the ownership of the solar thermal system is transferred to the industrial customer

SHIP2FAIR Business Model SHIP2FAIR Business Model – Build & Handover


Industrial Customer
willingness to decarbonize
using solar thermal to cover
its heat demand

Industrial Customer pays for the installation, investment and risks are allocated on the Industrial Customer

Potential incentives or subsidies from local authorities or EU institutions

Solar Thermal turnkey supplier & SHIP projects developer

Energy Consulting Companies Solar Thermal Equipment Manufacturers, etc.

Industrial Customer uses the SHIP plant to supply its heat demand, and operates and maintain the plant

SHIP2FAIR Business Model SHIP2FAIR Build & Handover: SHIP2FAIR Demo-sites

Build

Busine ss

Demonstrate (fine-tune)

model:

Transfer the ownership (*not applied in RODA case)

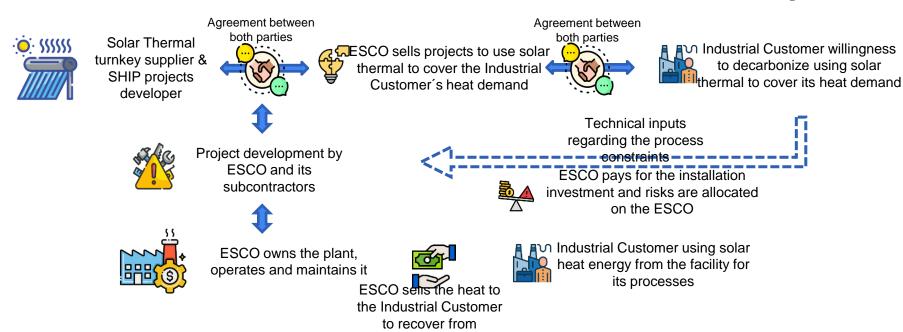
O&M&RpportingFerment

SHIP2FAIR Business Model SHIP2FAIR Build & Handover: other examples

Build

Busine • Transfer of ownership

ss model:


O&M support agreement in

place since 2017

JTI Jordan, Amman

SHIP2FAIR Business Model SHIP2FAIR Business Model – Build & Operate

Also known as: HPA - Heat Purchase Agreements

expenses

SHIP2FAIR Business Model SHIP2FAIR Build & Operate: Example of Solar District Heating

Dorkwerd project,

Groningen: NL Novar (Solarfields), NL

Connected consumers:

10'000 citizens

Annual solar share:

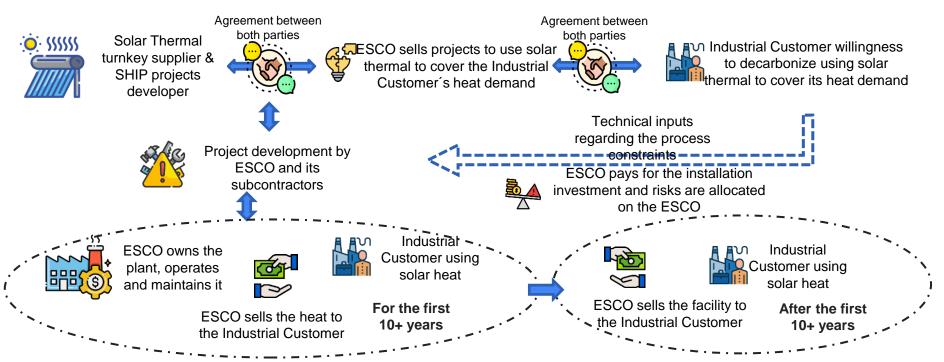
25% of heating needs

Tech provider: TVP Solar Capacity: 37MW

Solar field: Capacity: 37MW

Heat delivery: 25GWh/y

Size: 48'000 m2


Business model

A Special Purpose Vehicle (SPV) was founded by the:

- ⇒ Project developer (Novar)
- ⇒ Investor (K3)
- □ Technology provider (TVP Solar)

The SPV owns & operates the SDH system A 30-year Heat Purchase Agreement (HPA) has been signed with local DHN operator (utility Warmtestad)

SHIP2FAIR Business Model SHIP2FAIR Business Model – Hybrid

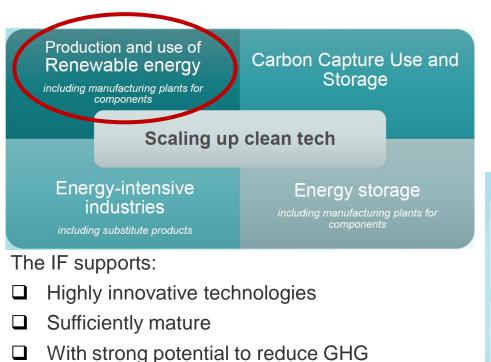
Policy Support for SHIP in Europe SHIP2FAIR

Funding Programmes & Incentives

SHIP2FAIR Incentives for Solar Thermal SHIP2FAIR Overview of funding schemes in Europe

European Funding Programmes

- Innovation Fund
- □ <u>LIFE</u>


Type of funding: grants as a % on the project eligible cost

National/ Regional Funding Programmes / Subsidies

- Using national financial resources
- ☐ Using a mix of national & European financial resources

Type of funding: grants or subsidies on the capital expenditure, tax exemptions, loans under advantageous conditions, feed in tariffs, etc.

SHIP2FAIR Incentives for Solar Thermal SHIP2FAIR The Innovation Fund

emissions

Funding available for:

- Small-scale projects: projects with a capital expenditure between €2.5 and 7.5 million
- Large-scale projects: > €7.5 million

Key features

Volume of at least EUR 38 billion until 2030 (at EUR 75 carbon price)

Support of up to 60% of CAPEX (small-scale)

40% of grant disbursed at financial close

Financed from the revenues of the EU Emissions Trading System

Annual calls for largescale and small-scale projects (CAPEX < EUR 7.5 million) 60% of grant disbursed during construction and 3-years operating period against GHG emission avoidance

Details here

SHIP2FAIR Incentives for Solar Thermal SHIP2FAIR National funding institutions – EU examples

Austria: BMK
(Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Germany: BAFA (Federal Office for Economic Affairs and Export Control)

Spain: IDEA (Institute for Diversification and Energy saving)

Further fundings for commercial and R&D projects

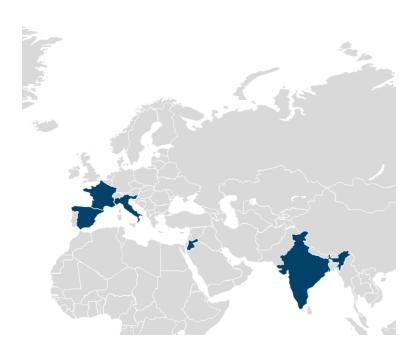
IEA Task 64: Collection of available solar process heat related national and trans-national research and funding programs

Solar Heat for Industrial Process towards Food and Agro Industries commitment in Renewables

SHIP2FAIR Replication Studies

Giorgio Bonvicini / Irapuã Ribeiro

Sustainable Places Workshop

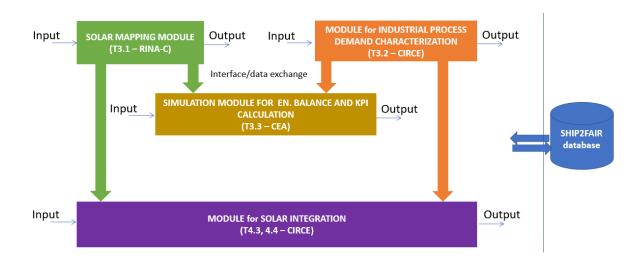

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 792276.

Disclaimer: The sole responsibility for any error or omissions lies with the editor. The content does not necessarily reflect the opinion of the European Commission. The European Commission is also not responsible for any use that may be made of the information contained herein.

SHIP2FAIR Replication Studies

SHIP2FAIR

- 10 industrial sites
- 8 industrial sectors (textile, chemical, wastewater treatment, dairy, meat curing, brewery, food, laboratory)
- 6 Countries (Italy, Spain, France, Slovenia, Jordan, India)
- Heat demand between 30°C and 195°C

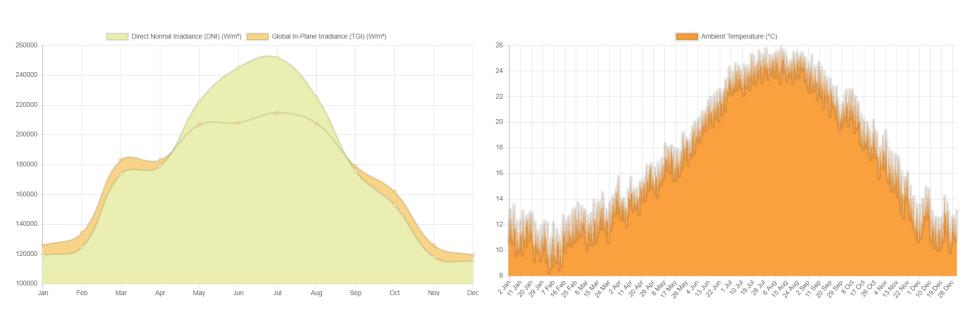

Scope of Replication Studies

Scope of the pre-feasibility studies:

- 1. Preliminary analysis of the potential for solar integration in the industrial processes
- 2. Full pre-feasibility study through the SHIP2FAIR Replication Tool
- 3. **Results discussed** and fine-tuned to find suitability to each case
- 4. **Direct contact with solar thermal technology providers** to proceed with further studies
- 5. **Discussion of results before publishing** the report and possibility to protect confidential data by avoiding any reference to the specific site

Replication Tool

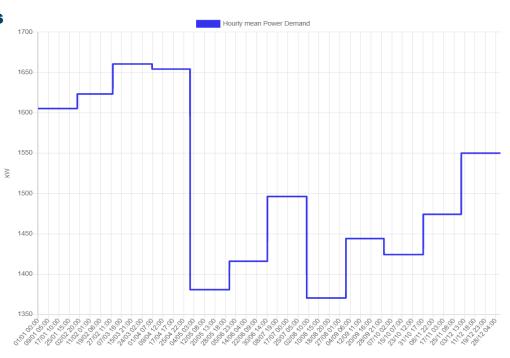
Replication Study: Chemical Industry


SHIP2FAIR

- Location: Tarragona, Spain
- Main products: industrial cleaners, personal care products, and emulsionants.
- Current heat supply: natural gas steam boiler, 4 MW nominal power
- Processes:
 - ☐ several processes, running 24/7
 - ☐ analyzed process works at 195°C with steam at 13 bar
- Annual thermal demand: 13.205 MWh
- Annual associated CO2 emissions: 3401 tons

74

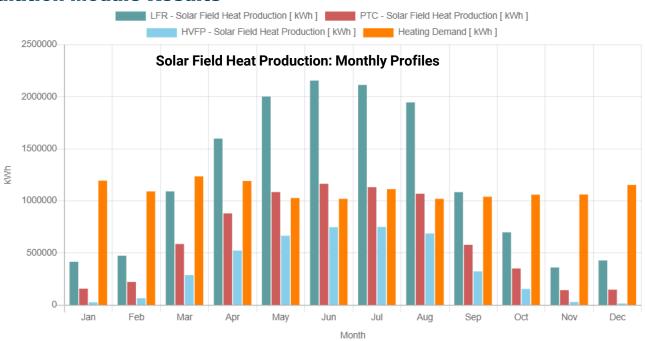
Solar Mapping Module Results



SHIP2FAIR

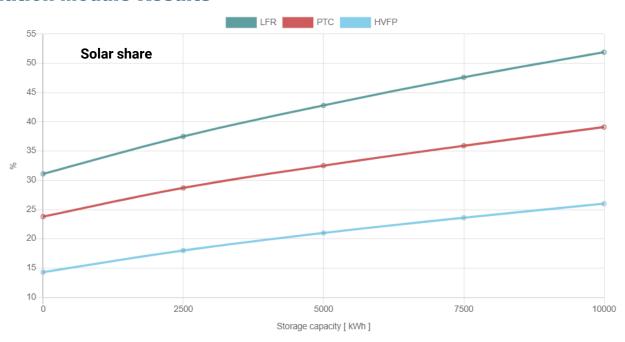
Replication Study – Chemical plant

Thermal Demand Module Results

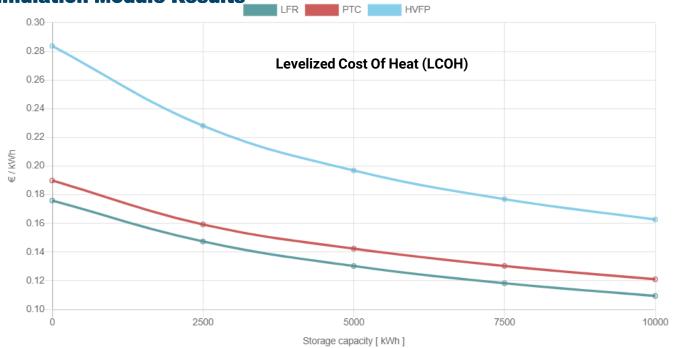

Simulation Module – Technology selection

Available area: ground 26.245 m²

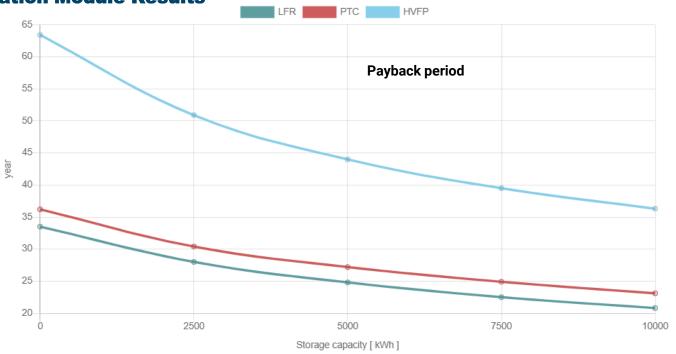
Technology selected	Collector aperture area
Parabolic Trough Collectors (PTC)	13,123 m²
Linear Fresnel reflectors (LFR)	19,684 m²
High Vacuum Flat Plate (HVFP)	14,566 m ²

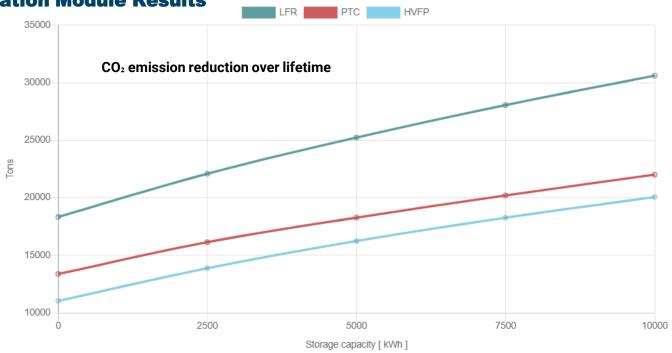


Simulation Module Results



Simulation Module Results





Simulation Module Results

Replication studies: discussion

Summary of Replication Studies

SHIP2FAIR

	Thermal Demand Temperature	Best Technology Selected	Collectors Area	LCOH	РВТ	Solar Share	GHG Emissions Avoided
	°C	-	m^2	EUR/MWh	У	%	tCO ₂ e/y
Case Study 1 – Textile, Italy	50-70	FPC	827	76.4	18.5	2.3	68
Case Study 2 – Chemical, Slovenia	130-180	LFR	25,981	44.9	11.0	6.0	2,315
Case Study 3 – Office/Laboratory, Italy	90-160	LFR	180	49.8	12.1	2.0	434
Case Study 4 – Waste Treatment, France	57-90	HVFPC	190	54.9	n.a.	n.a.	n.a.
Case Study 5 – Dairy, Spain	85	HVFPC	1,665	17.5	3.4	78.7	301
Case Study 6 – Meat Processing, France	55-96	HVFPC	2,200	44.0	12.0	18	520
Case Study 7 – Brewery, Spain	35-100	HVFPC	6,577	34.7	5.6	7.2	1,240
Case Study 8 – Food, Jordan	175	LFR	2,216	51.0	4.4	80.9	581
Case Study 9 – Chemical, Spain	195	LFR	19,684	109.0	20.2	51.9	1,224
Case Study 10 - Textile, India	170	LFR	17,100	16.8	8.0	4.3	7,633

Conclusions – Technical Aspects

- High Vacuum Flat Plate Collectors (HVFP) and Linear Fresnel Reflectors (LFR) are recurring as most suitable technologies:
 - HVFP for thermal demand slightly below 100°C
 - LFR for thermal demand between 100 and 200°C
- In most cases the limiting factor is space availability:
 - most industrial sites can satisfy only less than 10%) of heat demand with solar thermal
 - sites having much space available, even on ground, can reach very high solar shares, between 50% and 80% of the total heat demand, also exploiting thermal storage
- Avoided GHG emissions are strongly correlated with the solar share, which influences the absolute amount of GHG emissions avoided together with the fuel used in the baseline (natural gas in practically all cases except for the Indian one, using coal)

Conclusions – Financial Aspects

- Levelized Cost of Heat (LCOH) and investment Pay-Back Time (PBT) are strongly variable, depending on:
 - ratio between the initial investment for the installation of the solar thermal plant (including storage) and the thermal energy production of the site during the year
 - baseline thermal energy production cost, in turn depending on type and price of fuel used and on boilers efficiency
- All replication studies were carried out considering "normal" **fuel prices**, i.e. those before 2022 energy crisis; considering 2022 natural gas prices, much better financial performances would be achieved
- No public incentive was considered in the evaluation of financial performance: this could further improve the investment profitability
- General conclusion: solar thermal has a **very good potential** for implementation in all industrial sectors characterized by thermal energy demand, provided that site-specific pre-requisites are met especially in terms of solar resource availability (depending on latitude and on local conditions like orientation/slope/obstacles) and of space availability for the installation of solar thermal collectors

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 792276.

Disclaimer: The sole responsibility for any error or omissions lies with the editor. The content does not necessarily reflect the opinion of the European Commission. The European Commission is also not responsible for any use that may be made of the information contained herein.

Solar Heat for Industrial Process towards Food and Agro Industries commitment in Renewables

Roadmap for the deployment of Solar Heating for Industrial Processes

Final Event , 15.06.2023

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 792276.

Disclaimer: The sole responsibility for any error or omissions lies with the editor. The content does not necessarily reflect the opinion of the European Commission. The European Commission is also not responsible for any use that may be made of the information contained herein.

Roadmap for the deployment of Solar Heating for Industrial Processes SHIP2FAIR Agenda

Day 1 – June 15 th							
TIME	AGENDA	SPEAKER					
	Roadmap for the deployment of Solar						
	Heating for Industrial Processes						
	Main Objectives	LINKS					
11:55 h	 Most promising use cases 	Nicola Chiara,					
	Barriers	Innovation & Business Analyst					
	SHIP Deployment Roadmap						
	 Conclusions 						

Roadmap for the deployment of Solar Heating for Industrial Processes Main Objectives

Tailor the project result to the most promising use cases

Identify and analyze the barriers

Present a possible roadmap of the replicability of SHIP2FAIR in other industrial sectors

Roadmap for the deployment of Solar SHIP2FAIR Heating for Industrial Processes Most promising use cases

Target Market

Industrial sectors with process temperatures in the range between 50°C and 250°C

Identified Sectors

- Food & beverage
- Transport equipment
- Textile
- Machinery
- Pulp and paper industries
- Chemical industries

Technology

- Vacuum tube solar thermal technology for process heating & cooling
- High Vacuum Flat Panel -HVFP solar thermal technology for space heating (winter period) and process steam (summer period)
- HVFP technology for boiler pre-heating and process heat

Roadmap for the deployment of Solar Heating for Industrial Processes SHIP2FAIR Barriers

Regulation Compliance

Start dealing with regulation compliance in parallel with the design phase, in order to avoid delays in commissioning phase

Language Barrier

Include multi-language interface on the tools to facilitate replication and scale-up of SHIP2FAIR solution

Lack of specialized personnel

- Difficult to find specialized personnel in the energy and solar sector within SMEs
- Lack of an IT department in many SMEs

Roadmap for the deployment of Solar Heating for Industrial Processes SHIP2FAIR SHIP Deployment Roadmap

ACTIVITY	START	DURATION	MOI	NTHS																
			1	2	3	4	4	5	6	7	8	9	10	11	L 12	13	14	15	16	17
Regulations Compliance																				
Regulatory/ environmental authorisations	1	6																		
Construction permits	2	6																		
Design Phase																				
Engineering	2	3																		
System Integration	3	3																		
Replication Tool																				
Multi-language development and testing	2	2																		
Module Features Upgrade	5	3																		
Module Upgrade*	6	3						3												
Local Business Ecosystem Development																				
Engineering and construction companies selection	5	5																		
Installers, suppliers of energy equipment selection	5	5																		
Installation and Commissioning Phase																				
Logistics	4	3																		
Components Procurement	6	2																		
System Installation and commissioning	7	4																		
Control Tool																				
Multi-language development and testing	9	2																		
Communication protocols development and testing	10	4																		
MPC development and testing	11	6																		
Training																				
Personnel training	10	7					_													
*Module Upgrade depends on plant/new sector							+													

Solar Heat for Industrial Processes towards Food and Agro Industries commitment in Renewables

Roadmap for the deployment of Solar Heating for Industrial Processes SHIP2FAIR Conclusions

- The collaboration of the actors involved in SHIP2FAIR experience generated new knowledge that can evolve in the future to form local value chains or business 'ecosystems' on applications of Solar Heat for Industrial Processes (SHIP).
- Training activities on each new SHIP plant will be key. In order to effectively replicate the SHIP2FAIR solutions, it is
 important that staff training is supported by a comprehensive guidebook. This manual should include operation and
 maintenance standard procedures/ work instructions covering the respective integrated energy systems.

Nicola Chiara – nicola.chiara@linksfoundation.com

Solar Heat for Industrial Process towards Food and Agro Industries commitment in Renewables

Renewable penetration in Spanish Industry

Sustainable Places 2023, 15 June 2023

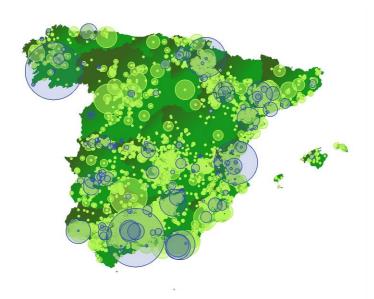
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 792276.

Disclaimer: The sole responsibility for any error or omissions lies with the editor. The content does not necessarily reflect the opinion of the European Commission. The European Commission is also not responsible for any use that may be made of the information contained herein.

Background SHIP2FAIR

- Climate neutrality by 2050.
- Decarbonisation of the economy, stable strategic framework:
 - Climate Change Law.
 - Integrated National Energy and Climate Plan
 - Fair Transition Strategy

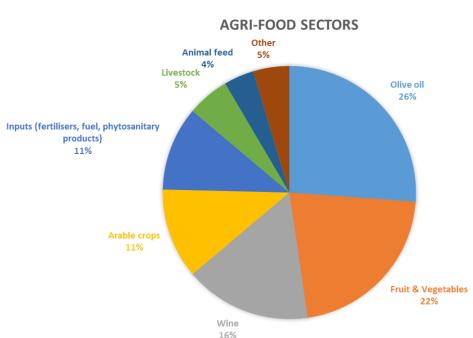
Background SHIP2FAIR


Integrated National Energy and Climate Plan

The following results are expected to be achieved:

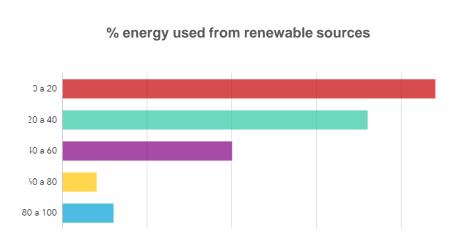
- 21% reduction in greenhouse gas (GHG) emissions compared to 1990.
- Significant growth in the penetration of renewable energies in Spain, reaching 74% in electricity and 42% in end use by 2030.
- 39.6% improvement in energy efficiency.

Background SHIP2FAIR


- The industrial sector is, after transport, the sector that consumes the most energy in Spain.
- Energy demands with a high thermal component.
- Need for change:
- Decarbonised, circular and more sustainable economy model.
- Greater weight of renewables.

- > 3.669 cooperatives (3.190 agricultural + 479 CEC).
- > **+ 1 Million** producer members.
- > Turnover: 33.880 Million € (38.428 M€ included investee capital companies).
- > +123.700 direct employees.

What is happening in agri-food SHIP2FAIR cooperatives? Survey


Solar Heat for Industrial Processes towards Food and Agro Industries commitment in Renewables

Annual energy consumption: 3 – 71,000 MWh (average 600 MWh)

Any renewable technology installed?

Declared renewable energy installations

✓ Solar thermal energy.

- Total installed capacity: average 28 kW
- Annual generation: average 29,025 kWh.
- Ownership of the installations: own.
- Use: drying, cooling, hot water, sterilisation.
- O Average temperature obtained: 90 ° C.
- Location: on roof.
- Area used: average 100 m2.
- Technology: flat plate collector.

✓ Solar photovoltaic energy.

- Total installed capacity: 10- 2,500 kW
- Annual generation: 10,000-2,5 million kWh
- Ownership of the installations: own.
- **Use:** 88 % self-consumption, 12 % only to the grid.
- Self-consumption:
 - Use: refrigeration, air-conditioning, lighting, drying, pre-cooling, dehydrating,
 - Discharge to the grid: 32%.
- Location: on roof.
- **Area used:** average 2,150 m². max. 40,000 m².

- **✓** Biomass consumption.
- Total installed capacity: 400-1,000 kW
- Annual generation: 100-16,000 kWh
- Ownership of the installations: own.
- Use of biomass boilers: Heat production
- Use in industrial processes: Drying, heating, oil shaking, heating of installations.

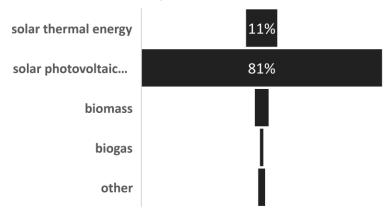
√ Biogas

Use: Heat production.

✓ Other technologies:

Aerothermia.

✓ Biomass production:


- Sources: Olive pit>olive pomace>grape seeds>pruning
- Annual production: average 1,000 tons.
- Destiny: self-consumption, sale.

- Only 30% have carried out an energy audit.
- Around 50% have implemented energy efficiency measures.
- Between 50 60 %...
 - Has interest in energy communities.
 - Has an interest in agrovoltaics.
 - Considers that the cooperative should be a promoter of the deployment of both.

In the near future...

...66 % intend to expand their capacity or make use of other renewable technologies in 0-3 years.

Intentions in 0-3 years to install renewables

Susana Rivera. rivera@agro-alimentarias.coop